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• Intro: Overview of Challenges and Approaches 

 

• Technical Intro: Direct and Inverse Stochastic Problem  

  –Machine Learning for Grid Operations 

 

• Machine Learning for Distribution Grid 

 

• Machine Learning for Transmission Grid 

 

• Graphical Models & New Physics=Grid Informed Learning Tools 
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Changes in the modern Grid: 
• Penetration of Renewables 
• Storage devices 
• Loads becomes active (not controlled) 
 
Challenges 
• Strong fluctuations/uncertainty 
• Needs real-time  observability, control 
• Millions of devices, many entities    

 

Data Analytics can improve resiliency in the Dynamic Grid  

New (available) Solutions 
• Hardware:  
 Smart meters, PMUs, micro-PMUs 
• Software/New algorithms: 
 Machine  Learning, IoT 

Vision: 
Design Algorithms for smart meter data  to  
learn and control (state of the grid) 
 
 
Features:  
• Build upon Physics of Power flow & the 

network/graph features. 
• Scalable and computationally tractable 
• Address desired (spatio-temporal) sparsity 
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Grid should operate in spite of  
uncertainty & fluctuations 

uncertainty: 

• Graph Layout (switching of lines) + other +/- variables (transformers) 

• State Estimation (consumption & production) 

• Deterministic static & dynamic models (e.g. relating s=(p,q) to v) 

• Probabilistic (statistical) models => 

 

fluctuations: 

• Renewable generators (wind & solar) 

• loads (especially if active = involved in Demand Response) 

𝑠𝑗 =  𝑣𝑗

𝑘~𝑗

𝑣𝑗−𝑣𝑘

𝑧𝑗𝑘

∗
 

Power Flow Eqs. 
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Direct Deterministic Problem:  

Power Flow (static/minutes) 

Given: 
• operational grid=graph, inductances/resistances  

• injections/consumptions (for example) 

Compute: 
• power flows over lines 

• voltages 

• phases 

 

𝑠𝑗 =  𝑣𝑗

𝑘~𝑗

𝑣𝑗−𝑣𝑘

𝑧𝑗𝑘

∗
 

Power Flow Eqs. 
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Direct Stochastic Problem:  

Power Flow (static/minutes) 

Given: 
• operational grid=graph, inductances/resistances  

• Probability distribution (statistics) of injections/consumptions (for example) 

 -- samples are assumed drawn (from the probability distribution), e.g. i.i.d. 

 

Compute statistics of: 
• power flows over lines 

• voltages 

• phases 

joint & marginal probability distributions 

 

𝑠𝑗 =  𝑣𝑗

𝑘~𝑗

𝑣𝑗−𝑣𝑘

𝑧𝑗𝑘

∗
 

Power Flow Eqs. 
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Inverse Stochastic Problem:  

Power Flow (static/minutes) 

Given: 
• operational grid=graph, inductances/resistances  

• snapshots/measurements of power flows, voltages, phases 

• parametrized representation for statistics of  

      injections/consumptions, e.g. Gaussian & white 

Infer/Learn: 
• parameters for statistics of the injection/consumption 

• operational grid=graph 

Sample/Predict: 
• configurations of injection/consumption  

       => direct problem (compute) 

𝑠𝑗 =  𝑣𝑗

𝑘~𝑗

𝑣𝑗−𝑣𝑘

𝑧𝑗𝑘

∗
 

Power Flow Eqs. 
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Machine Learning for the Grid  (at least some part) =  

 Automatic Solution of the Inverse Grid Problem(s) 
 

Many flavors: 
• static vs dynamic 

• transmission vs distribution 

• blind (black box) vs grid/physics informed 

• samples vs moments (sufficiency) 

• principal limits (IT) vs efficient algorithms 

• ML for model reduction 

• individual devices vs ensemble learning 

  

  [focus only on some of these ``complexities” in the talk] 
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Machine Learning for Distribution Grid 

Learn 
• Switch statuses 
• Load statistics, line impedances 
 
Challenges 
• Nodal Measurements (voltages) 
• Missing Nodes 
• Information limited to households 

 
 

 

Substation 

   Load Nodes 

Key Ideas 
• Operated Radial structure 
• Linear-Coupled power flow model 
• Graph Learning tricks 

D. Deka, S. Backhaus, MC 

arxiv:1502.07820, 1501.04131, + 
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Machine Learning for Distribution Grid 

Linear-Coupled power flow model: 
 
 
                  
              equivalent  to    
       LinDistFlow (Baran-Wu) 
 
 
 
 
 
 

 
 

 

D. Deka, S. Backhaus, MC 

arxiv:1502.07820, 1501.04131, + 
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Machine Learning for Distribution Grid 

Key Idea: 
• Use variance of voltage diff. as edge weights 

 
 

• Minimal value outputs the nearest neighbor 
                                                
 

 
 
 
 
 
 

 

D. Deka, S. Backhaus, MC 

arxiv:1502.07820, 1501.04131, + 

𝑐 

𝑏 

a 

𝑎 

𝑐 
𝑏 

𝑎 
𝑐 

𝑏 

Learning Algorithm: 
• Min spanning tree with variance of 

voltage diff. as edge weights 
 

 No other information needed 
 Low Complexity: 
 Can learn covariance of fluctuating loads 

 
 

𝑐 

𝑏 

a 
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Machine Learning for Distribution Grid 

Learning with missing nodes: 
• Missing nodes separated by 2 or more hops 

 
 

D. Deka, S. Backhaus, MC 

arxiv:1502.07820, 1501.04131, + 

Learning Algorithm: 
• Min spanning tree with available 

nodes 
 

𝑎 

𝑏 
𝑙 

𝑎 

𝑎 

• Starting from leaf,  check missing node 

𝑎 

𝑐 

𝑏 

𝑎 

𝑏 

𝑐 

𝑎 𝑏 

𝑐 

Leaf Intermediate 
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Machine Learning for Distribution Grid 

Learning with missing nodes & reduced information: 
• Missing nodes separated by 2 or more hops 
• Model reduction, ensemble (sampling distributions) 

D. Deka, S. Backhaus, MC 

arxiv:1502.07820, 1501.04131, + 

Extensions: 
 Learn using end-node (household) data accounting for 

 mix of active (with control) & passive 
 dynamics of loads/motors and inverters 
 emergencies, e.g. FIDVR 

 Learn 3 phase unbalanced networks 
 Learn loopy grid graph 

 cities (Manhattan) 
 rich exogenous correlations (loops  
       representing non-grid knowledge) 

 

 Coupling to other physical infrastructures 

- gas/water distribution 

- thermal heating 

e.g. extending the learning methodology 

to the more general ``physical flow” networks 
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Recently Awarded GMLC: 

Topic 1.4.9 Integrated Multi Scale Data Analytics and Machine Learning for the Grid  

 

PIs:  

Emma Stewart (LBNL) 

Michael Chertkov (LANL) 

 

NL involved:  

LBNL,LANL, SNL, ORNL, LLNL, NREL, ANL 

 

   • Platform  

 - review  

 - development,  

     - data collection 

• ML and Data Analytics for Visibility 

• ML and Data Analytics for Resilience 
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Integrating Distrib.-Level (stochastic) Loads in  Frequency Control  

Idea: Use distribution level Demand Response (DR), specifically ensemble of 

Thermostatically Control Loads (TCL), to balance SO signal through Aggregator (A) 
• Thousands of TCLs are aggregated 

• SO->Aggregator (A)->TCLs [top-> bottom] 

• Aggregator is seen (from above) as a “virtual GEN” 

 Goal of the study to answer the principal question:  

• Can A follow the SO’s real-time signal as an actual GEN? 

• … and do it under “social welfare” conditions [our novel approach]: 

 TCLs are controlled by the aggregator in a least intrusive way  

• broadcast of a few control signals  

 (switching [stochastic] rates, temperature band) 

• probability distribution (PD) over states (temperature, +/-)  

 is the control variable 

 

 

 

   

Tens of Secs-Mins-to-Hours 

G
ig

a
w

a
tt

s
 

Virtual generator =Aggregator output  
           SO request & Actual 

Results & Work in Progress: 
• Builds on theory & simulation experience from 

Nonequilibrium StatMech & Control 

• Stochastic/PDE/spectral methods for analysis of 

the PD (“driven” Fokker-Planck) were developed 

and cross-validated 

• Ensemble Control Scheme (“second 

quantization”= Bellman-Hamilton-Jacobi 

approach for PD) is formulated … testing. 

Aggregator 
State Estimation 

(PD) 
Broadcast control 

decisions to TCLs 

SO 

signal 

Cooling 

Heating 

ON / OFF 
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Fault-Induced Delayed Voltage Recovery 

Challenges: 

• Describe FIDVR quantitatively  

• Learn to detect it fast 

• Predict if a developing event will or 

    will not lead to recovery? Cascade? 

• Develop minimal preventive  

    emergency controls  

Hysteretic behavior/stalling 

Results: 

• Reduced PDE model was developed 

• Distributed Hysteretic behavior was  

    described 

• Effects of disorder and stochasticity  

    were analyzed 

• Effect of cascading from one feeder to  

     another and possibly further to transm.  

     was investigated 
Work in progress: 

• Effects of other devices (controlled or not) 

• Preventive/emergency control 
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Optimal Distributed Control of Reactive Power via ADMM 

 
Challenges: 

• Develop algorithm to control voltage and losses in distribution 

• Do it using/exploring new degree of freedom 

    = reactive capabilities of inverters 

Results: 

• The developed control (based on the LinDistFlow 

     representation of the Power Flows in distribution is 

• Distributed (local measurements 

    + communications with neighbors) 

• Efficient = implemented via powerful ADMM) 

    (Alternative Direction Method of Multipliers 

Power Flow Equations 

= Losses 

Validated on realistic distribution circuits 

performance 

local vs global 
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Resilient Distribution Systems (Bent, Backhaus, Yamangil, Nagarajan) 
Goal: Withstand the initial impact of large-

scale disruptions 

Develop tools, methodologies, and algorithms to enable 

the design of resilient distribution systems, using 

• Asset hardening 

• System expansion by adding new: 

• Lines/circuit segments 

• Switching 

• Microgrid facilities 

• Microgrid generation capacity 

• Binary decisions, mixed-integer programming 

problem 

 Algorithm Model 

Relaxations 

Observations 

- Rural networks require larger resilience 

budgets/MW served.   

- Microgrids favored over 

hardened lines 

- Urban budget is insensitive to critical 

load requirements 

- Minimal hardening of lines 

achieves resilience goals 
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Key Ideas 
• Temporal scale separation: 
     slow (tens of mins) vs fast (tens of secs)  
• Learning stochastic ODEs – generalized  
 stochastic swing equations 
• Spatial aggregation – incorporating PDEs 
• Green function approach (extending 

Backhaus & Liu 2011 beyond  
     detailed balance) 

 
 

Machine Learning for the Transmission Grid: 
Ambient Stage 

Learn 
• Inertia, damping for generators 
• Key parameters for (aggregated) loads (state 

estimation) 
• Statistics of spatio-temporal fluctuations 

(statistical state estimation) 
• Critical wave-modes (speed of propagation, 

damping) 
 
Challenges 
• Limited measurements 
• Incorporating PMU with SCADA 
• On-line requirements, 
 e.g. need linear scaling algorithms 

 

D. Deka, S. Backhaus, MC + 

 work in progress 
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Key Ideas 
• Modeling: electro-mechanical waves over 

1d+ and/or 2d aggregated media, 
forerunner (shortest path), interference 
pattern  

 

Machine Learning for the Transmission Grid: 
Detection & Mitigation of Frequency Events 

Learn 
• Detect, localize & size frequency events  
      in almost real time, utilizing  
      ambient state estimation 
Challenges 
• Spatio-temporaly optimal, fast measurements  
• Have a fast predictive power – is an extra 

control needed? when? where? 

D. Deka, S. Backhaus, MC + 

 work in progress 



Slide 25 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

Machine Learning for the Transmission Grid: 
Industry-grade Implementation 

Goal: 
• Develop data aided architecture 
• Database of past events 
• Combine PMU with SCADA + (aggregated) uPMU 
 
 Grid-informed  ML Analysis (just discussed) and 

New Tools (advanced visualization, events 
detection) 

 Validation against and developing industry 
standards  

 - Principal Component Analysis 
 - Existing software (PPMV, FRAT) 
 Optimal sizing/sampling of PMUs 

 
 

         GMLC 2.0 proposal 

 in collaboration with  

 LBNL, PNNL, Columbia U 
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• Intro: Overview of Challenges and Approaches 

 

• Technical Intro: Direct and Inverse Stochastic Problem  

  –Machine Learning for Grid Operations 

 

• Machine Learning for Distribution Grid 

 

• Machine Learning for Transmission Grid 

 

• Graphical Models & New Physics/Grid Informed ML-tools 
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01/18-22/16 
cnls.lanl.gov/machinelearning 
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Graphical Models for Power Systems  

      (and beyond) 

j k 

l 

3-bus Power System 

v-voltage 

s-(apparent) power 

Universal formulations for all statistical objects of Interest: 
• Marginal Probability of voltage at a node   -  P(𝑣𝑗)= 𝑃(𝑥)𝑥\𝑣𝑗

 

• Most probable load/wind at a node  [instanton] 

       keeping voltages within a domain      -      𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑗
 

𝑥\ 𝑠𝑗
𝑃(𝑥)𝑣 ∈𝐷𝑜𝑚𝑣

 

•  Stochastic Optimum Power Flows (CC-, robust-) +  dynamic (multi-stage) + planning ++ 

•  Allows to incorporate multiple “complications” 

  - Any deterministic constraints (limits, inequalities), e.g. expressing feasibility 

  - Any mixed (discrete/continuous) variables, e.g. switching 

e.g. opens it up  

for new 

Machine Learning + 

solutions 

P(x)~  𝑓𝑎 𝑥𝑎𝑎  

𝑥𝑗 

𝑓𝑗𝑘 𝑥𝑗→𝑘 
𝑓𝑗 

joint probability  

distribution 

auxiliary 

graph 
         𝑥𝑗= 𝑣𝑗 , 𝑠𝑗           𝑥𝑗→𝑘 = 𝑣𝑗→𝑘, 𝑠𝑗→𝑘  

 

        a∈ 𝑗, 𝑘, 𝑙, 𝑗 → 𝑘, 𝑘 → 𝑗, 𝑘 → 𝑙, 𝑙 → 𝑘, 𝑗 → 𝑙, 𝑙 → 𝑗  

 

𝑓𝑗 𝑥𝑗 , 𝑥𝑗→𝑘, 𝑥𝑗→𝑙 = 𝐼 𝑠𝑗, 𝑠𝑗→𝑘 + 𝑠𝑗→𝑙 ∗ 𝐼 𝑣𝑗 , 𝑣𝑗→𝑘, 𝑣𝑗→𝑙 *Prob(𝑠𝑗) 

 

𝑓𝑗𝑘 𝑥𝑗→𝑘, 𝑥𝑘→𝑗 = 𝐼 𝑠𝑗→𝑘, 𝑣𝑗→𝑘
𝑣𝑗→𝑘−𝑣𝑘→𝑗

𝑧𝑗𝑘

∗
∗ 𝐼 𝑠𝑘→𝑗 , 𝑣𝑘→𝑗

𝑣𝑘→𝑗−𝑣𝑗→𝑘

𝑧𝑗𝑘

∗
 

 

power flows 

exogenous nodal  

statistics 
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P(x)~  𝑓𝑎 𝑥𝑎𝑎  

𝑥𝑗 

𝑓𝑗𝑘 𝑥𝑗→𝑘 
𝑓𝑗 

joint probability  

distribution 

auxiliary 

graph 

• Direct Problem – Statistical Inference 

 (marginal, partition function, ML) 

• Inverse Problem – Learning 

 (graphs & factors) from samples 

Complexity of Learning: Easy vs Hard 

• Statistical Inference (direct problem) is difficult 

 

• Is learning (inverse problem)hard? 

• Traditional Approach: Sufficient Statistics =>  

     Estimate Correlations from samples 

• Sample & Computational Complexity are 

                       (generally) exponential  

• New Story (2015) – Don’t follow the sufficient statistics path 

• Focus on Sample and Computational Complexity of finite GM Learning 

• Provably efficient “local” optimization schemes (binary, pair-wise GM) 

•  based on ``conditioning” to vicinity of a local variable  

            [Bressler 2015] 

• based on ``screening” interaction through an accurate choice  

     of the optimization cost  [M. Vuffray, A. Lokhov, S. Misra, MC 2016] 

• generalizable – applies directly to an arbitrary GM  
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Summary & Path Forward 

• ML for distribution – PF-aware spanning tree algorithm to learn structure 
(forest) and correlations of loads 

 

• ML for transmission – two-state on-line learning – ambient + emergency 
[learning parameters of ODEs, model reduction, waves] 

 

• Graphical Models – proper language for variety of stochastic grid 
problems, e.g. related to learning. 

– Recent progress in GM learning -light, distributed, provably exact schemes – applies 
naturally to the grid-specific  (and other physical network-specific) ML problems.  

– New relaxation ideas based on adaptive Linear Programming – Generalized Belief 
Propagation schemes – complementary to ``standard” relaxations for OPF & related 
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The Ising Model Learning Problem 

𝜎1 
𝜎2 

𝜎3 

𝜎4 
𝜎5 

𝜎1 
𝜎2 

𝜎3 

𝜎4 
𝜎5 

𝜎1
(1)

, … , 𝜎𝑁
(1)

 

𝜎1
(𝑀)

, … , 𝜎𝑁
(𝑀)

 

⋮ ⋮ 

Reconstruct graph and 

couplings with high 

probability 

Generate 𝑀 i.i.d. samples 

of binary sequences 

𝜇 𝜎1, … , 𝜎𝑁 ∝  exp 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑖,𝑗 ∈𝐸

 

Back to main presentation 
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Learning is Easy in Theory & Practice 

Complexity: exp
𝑒𝑐1𝑑𝐽𝑚𝑎𝑥

𝐽𝑚𝑖𝑛
𝑐1 𝑁2 log 𝑁 Samples Required: exp

𝑒𝑐1𝑑𝐽𝑚𝑎𝑥

𝐽𝑚𝑖𝑛
𝑐1 log 𝑁 

Number of variables: 𝑁 

Number of samples: 𝑀 

Maximum node degree: 𝑑 

Coupling intensity: 𝐽𝑚𝑖𝑛 ≤ 𝐽𝑖𝑗 ≤ 𝐽𝑚𝑎𝑥 

Complexity: 
𝑒8𝑑𝐽𝑚𝑎𝑥

𝐽𝑚𝑖𝑛
2 𝑁3 log 𝑁 Samples Required: 

𝑒8𝑑𝐽𝑚𝑎𝑥

𝐽𝑚𝑖𝑛
2 log 𝑁 

Bresler (2015) 
Structure Learning 

Vuffray et al. (2016) 
Structure + Parameter 
Learning 

We develop new model estimators: (Regularized) Interaction Screening Estimators 

They are consistent estimators for all graphical models (Continuous variables, general interactions, etc…) 

Provably optimal on arbitrary Ising Models, distributed  

Back to main presentation 
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The Screening Estimator(s) 

𝐽 𝑢
𝑀 = argmin

𝜃
𝑓𝑢

𝑀 𝜃 + 𝜆𝑁,𝑀 𝜃 1 𝐽 𝑢 = argmin
𝜃

𝑓𝑢 𝜃  

𝑓𝑢 𝜃 =  exp −𝜃𝑗𝑢𝜎𝑗𝜎𝑢

𝑗≠𝑢

 𝑓𝑢
𝑀 𝜃 =

1

𝑀
  exp −𝜃𝑗𝑢𝜎𝑗

(𝑘)
𝜎𝑗

(𝑘)

𝑗≠𝑢𝑘=1,…,𝑀

 

Number of samples: ∞ Number of samples: 𝑀 

Regularizer reduces # of samples required: 
 𝑂 𝑁 ln 𝑁 ⟶ 𝑂 ln 𝑁  

Back to main presentation 


